Statistical analysis of ejection property of plasma blobs from plasma column in the linear plasma device

N. Ohno¹⁾, H. Tanaka¹⁾, Y. Tsuji¹⁾, K. Okazaki¹⁾ S. Kajita²⁾,

- 1) Department of Energy Engineering and Science, Graduate School of Engineering, Nagoya-University, Nagoya 464-8603, Japan
- 2) Eco Topia Science Institute, Nagoya-University, Nagoya 464-8603, Japan

Plasma Blob Study in SOL/Divertor Plasma

Topics:

1) Transport of plasma blobs in SOL/divertor plasma

S.I. Krasheninnikov, Phys. Lett. A 283 (2001) 368.

2) Generation statistics and mechanism of plasma blobs

Statistics of plasma blob generation

Waiting-time statistics for bursty signals observed by a divertor probe in LHD

Only in time domain

N. Ohno et al. PET9 Contrib. Plasma Phys. **46**, No. 7-9 (2006)

In this study,

Statistics of <u>appearance positions</u> of plasma blobs has been analyzed based on 2D images taken in the linear device.

Linear plasma device: NAGDIS-II

NAGDIS-II (NAGoya Divertor plasma Simulator - II)

2D structure captured by a fast camera

Photos

By increasing the neutral gas pressure, plasma in front of viewing port was disappeared

- plasma detachment and
- enhancement of blobby plasma transport

Spiral structures propagate radially and azimuthally.

128x256pixel (~54x108mm²) Probe

Snapshots

Shutter speed: 100000s⁻¹ / Frame rate: 30000fps

Global rotation is determined by ExB drift

Radial plasma potential profile in NAGDIS-II

Radial electric field E_r

→E_rxB rotation

→Centrifugal force

Driving force of blobby plasma transport

Data extraction in the azimuthal direction

Profile of standard deviation σ

o profile at r < 25 mm is non-axisymmetric because of signal saturation and out of alignment

<u>Upper view</u>

Data extraction in the azimuthal direction

Profile of standard deviation σ

Fluctuation component (If = I - <I>) on each pixel at r ~ 25 mm was plotted as functions of time and azimuthal angle θ

<u>θ-t plot of fluctuation component If</u>

Azimuthal position in rotating coordinate system

Detection of appearance positions

Detection of appearance positions

Blue dots indicate azimuthal angle Θ at $I_{max}^f > 2\sigma$, Θ_{max}

Consecutive Θ_{max} was weighted mean as an appearance, Θ_{i} , in the range of [-180deg, 180deg)

$$\begin{cases} \Theta_{i} = (\Sigma_{n} I_{max}^{f}(n) \Theta_{max}(n)) / (\Sigma_{n} I_{max}^{f}(n)) \\ t_{i} = (\Sigma_{n} I_{max}^{f}(n) t_{max}(n)) / (\Sigma_{n} I_{max}^{f}(n)) \end{cases}$$

Statistics of difference between consecutive steps

Above calculation: -180deg<Θ_i<180deg

Detected positions

Zero-mean Gaussian distribution was obtained

Difference between Θ_{i+1} and Θ_i :

$$\Delta\Theta_i = \Theta_{i+1} - \Theta_i, (i \ge 1)$$

Below, we assume -180deg< $\Delta\Theta_i$ <180deg

Probability density function of $\Delta\Theta_i$

Trajectory of the appearance position

Time series of reconstructed Θ_i and i

 Θ in all range can be reconstructed by accumulation of $\Delta\Theta_i$:

$$\Theta_{i+1} = \sum_{k=1}^{i} \Delta \Theta_k.$$

 Θ_i moved in range over 8 revolutions in 500 ms

Rescale range analysis

$S_n(l) = \langle |\Theta_{i+l} - \Theta_i|^n \rangle.$

if $S_n(l) \propto l^{\zeta_n}$ and $\zeta_n = Hn \longrightarrow H$: Hurst exponent

 $\begin{cases} 0 < H < 0.5 & \cdots \text{negative autocorrelation} \\ H = 0.5 & \cdots \text{no correlation (Brownian motion)} \end{cases}$

0.5 < H < 1 ··· positive autocorrelation

Exponents of power-law scaling

Absolute moments of increments S_n

H of the reconstructed Θ_i is slightly smaller but is close to 0.5 (Brownian motion)

Summary and discussion

- The trajectory of the reconstructed azimuthal position seems to behave as the Brownian motion around the general rotation
- Step size obey zero-mean Gaussian distribution with the standard deviation of ~60 degree
- → Each coherent structure appeared around the previous appearance position in the rotating coordinate system
- Each event influence density and potential profiles, and then, next step would be fluctuated
- → Density and potential fluctuations attributed to the each event would have a key role for determination of spatial statistics